Imino sugars are potent agonists of the human glucose sensor SGLT3.

نویسندگان

  • Andrew A Voss
  • Ana Díez-Sampedro
  • Bruce A Hirayama
  • Donald D F Loo
  • Ernest M Wright
چکیده

Imino sugars are used to treat type 2 diabetes mellitus [miglitol (Glyset)] and lysosomal storage disorders [miglustat (Zavesca)] based on the inhibition of alpha-glucosidases and glucosyltransferases. In this substrate specificity study, we examined the interactions of imino sugars with a novel human glucose sensor, sodium/glucose cotransporter type 3 (hSGLT3), using expression in Xenopus laevis oocytes and electrophysiology. The results for hSGLT3 are compared with those for alpha-glucosidases and human SGLT type 1 (hSGLT1), a well characterized sodium/glucose cotransporter of the SGLT family. In general, substrates have lower apparent affinities (K0.5) for hSGLT3 than hSGLT1 (D-glucose, alpha-methyl-D-glucose, 1-deoxy-D-glucose, and 4-deoxy-4-fluoro-D-glucose exhibit K0.5 values of 19, 21, 43, and 17 mM, respectively, for hSGLT3, and 0.5, 0.7, 10, and 0.07 mM, respectively, for hSGLT1). However, specificity of hSGLT3 binding is greater (D-galactose and 4-deoxy-4-fluoro-D-galactose are not hSGLT3 substrates, but have hSGLT1 K0.5 values of 0.6 and 1.3 mM). An important deviation from this trend is potent hSGLT3 activation by the imino sugars 1-deoxynojirimycin (DNJ), N-hydroxylethyl-1-deoxynojirimycin (miglitol), N-butyl-1-deoxynojirimycin (miglustat), N-ethyl-1-deoxynojirimycin, and 1-deoxynojirimycin-1-sulfonic acid, with K0.5 values of 0.5 to 9 microM. The diastereomer 1-deoxygalactonojirimycin activates hSGT3 with a K0.5 value of 11 mM, a 3000-fold less potent interaction than is observed for DNJ (4 microM). These imino sugar binding characteristics are similar to those for alpha-glucosidases, but there are no interactions with hSGLT1. This work provides insights into hSGLT3 and -1 substrate binding interactions, establishes a pharmacological profile to study endogenous hSGLT3, and may have important ramifications for the clinical application of imino sugars.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Single Amino Acid Change Converts the Sugar Sensor SGLT3 into a Sugar Transporter

BACKGROUND Sodium-glucose cotransporter proteins (SGLT) belong to the SLC5A family, characterized by the cotransport of Na(+) with solute. SGLT1 is responsible for intestinal glucose absorption. Until recently the only role described for SGLT proteins was to transport sugar with Na(+). However, human SGLT3 (hSGLT3) does not transport sugar but causes depolarization of the plasma membrane when e...

متن کامل

Sugar binding residue affects apparent Na+ affinity and transport stoichiometry in mouse sodium/glucose cotransporter type 3B.

SGLT1 is a sodium/glucose cotransporter that moves two Na(+) ions with each glucose molecule per cycle. SGLT3 proteins belong to the same family and are described as glucose sensors rather than glucose transporters. Thus, human SGLT3 (hSGLT3) does not transport sugar, but extracellular glucose depolarizes the cell in which it is expressed. Mouse SGLT3b (mSGLT3b), although it transports sugar, h...

متن کامل

Mouse SGLT3a generates proton-activated currents but does not transport sugar.

Sodium-glucose cotransporters (SGLTs) are secondary active transporters belonging to the SLC5 gene family. SGLT1, a well-characterized member of this family, electrogenically transports glucose and galactose. Human SGLT3 (hSGLT3), despite sharing a high amino acid identity with human SGLT1 (hSGLT1), does not transport sugar, although functions as a sugar sensor. In contrast to humans, two diffe...

متن کامل

A glucose sensor hiding in a family of transporters.

We have examined the expression and function of a previously undescribed human member (SGLT3/SLC5A4) of the sodium/glucose cotransporter gene family (SLC5) that was first identified by the chromosome 22 genome project. The cDNA was cloned and sequenced, confirming that the gene coded for a 659-residue protein with 70% amino acid identity to the human SGLT1. RT-PCR and Western blotting showed th...

متن کامل

Protection of muscle membrane excitability during cycling in humans: a role for SGLT3?

TO THE EDITOR: Intracellular processes are known to be regulated by extracellular glucose concentration, although the precise mechanism/s by which this occurs remains to be established and may vary between tissues. One of the earliest identified “glucose-sensing” mechanisms is the glucose-induced insulin release from pancreatic beta cells (1). Insulin release from pancreatic beta cells appears ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmacology

دوره 71 2  شماره 

صفحات  -

تاریخ انتشار 2007